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MORITA INVARIANCE OF EQUIVARIANT

LUSTERNIK-SCHNIRELMANN CATEGORY AND
INVARIANT TOPOLOGICAL COMPLEXITY

A. ANGEL, H. COLMAN, M. GRANT AND J. OPREA

ABSTRACT. We use the homotopy invariance of equivariant principal bundles to prove
that the equivariant A-category of Clapp and Puppe is invariant under Morita equiv-
alence. As a corollary, we obtain that both the equivariant Lusternik-Schnirelmann
category of a group action and the invariant topological complexity are invariant under
Morita equivalence. This allows a definition of topological complexity for orbifolds.

1. Introduction

Many (and maybe all) orbifolds may be described as global quotients of spaces by com-
pact group actions with finite isotropy groups. But in fact, the same orbifold may have
descriptions involving different spaces and different groups. In order to classify orbifolds,
therefore, a notion of equivalence appropriate to this type of representation must be de-
fined. This notion is provided by Morita equivalence (see Section 2). The idea to combine
Morita equivalence with standard tools of equivariant algebraic topology (such as Bredon
cohomology) to obtain invariants for orbifolds seems to first appear in [19]. In this short
paper, we will extend the results of [19] to two more standard equivariant invariants,
equivariant Lusternik-Schnirelmann category and “equivariant” topological complexity.
The word “equivariant” is in quotes here because, in fact, we shall demonstrate that stan-
dard equivariant topological complexity is not Morita invariant, so it cannot be a good
invariant of orbifolds. Instead, it is the invariant topological complexity that is a Morita
invariant.

Lusternik-Schnirelmann category was invented around 1930 with the goal of providing
a lower bound for the number of critical points for any smooth function on a compact
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manifold. For more information, see [8] and Section 3 below. An equivariant version of
LS category was given in [9, 14, 6] and the appropriate lower bound for critical points
of equivariant functions given. Suffice it to say here that the idea of LS category is
to minimally split a space into atomic elements and to use the number of such atoms
as an invariant. Topological complexity was invented in [10] (see Section 3) with the
same idea to split a space into a minimal number of atoms, but with the goal of solving
the motion planning problem in robotics on each atom. Again, the minimal number of
atoms is an invariant. Equivariant topological complexity was studied in [7] and, in the
modified form of invariant topological complexity, in [13]. Our main result is that, for
compact Lie group actions, equivariant LS category (even in the extended sense of [5]) and
invariant topological complexity are Morita invariant and therefore suitable as invariants
of orbifolds. This was conjectured in [1].

Our method of proof involves the use of equivariant principal bundles and we foresee
that these objects may prove useful in other contexts within the general framework of
Morita equivalence of group actions.

2. Morita equivalence for group actions

A topological groupoid G = G is an internal groupoid in the category of topological
spaces; that is a groupoid with a topological space of objects Gy and one of morphisms
G together with the usual structure maps: source and target s,t: G; — Gy, identity
arrows determined by u: Gy — G4, and composition m: Gy X g, G1 — G1, all given by
continuous maps, such that s (and therefore ¢) is an open surjection.

Let G be a topological group acting continuously on a Hausdorff space X. From this
data we can construct a topological groupoid, the translation groupoid G x X, whose
objects are the elements of X and whose morphisms z — y are pairs (g, x) € G x X such
that gr = y, with composition induced by multiplication in G. That is, G x X is the
groupoid G' x X == X where the source is the second projection and the target map is
given by the action.

For each = € X the isotropy group G, = {h € G | hx = x} is a closed subgroup of G.
The set Gz = {gz | g € G} C X is called the orbit of x and denoted [z]s.

The translation groupoid G' x X may be regarded as a version of the quotient space
X/G which keeps more data than the quotient itself as a topological space.

An equivariant map ¢ X € : G x X — H X Y is a pair (1, €) consisting of a homomor-
phism ¢ : G — H and a continuous map € : X — Y, such that e(gx) = ¥ (g)e(z) for all
ge G, reX.

2.1. DEFINITION. An essential equivalence ¢ x € : G x X — H X Y 1is an equivariant
map satisfying:
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1. (essentially surjective) t o w is an open surjection:

Xxy(HxY)—">HxYt>Y

l lpz

X - Y

where the square is a pullback.

2. (fully faithful) There is a homeomorphism \: G x X — P given by \(g,z) =
(¥(g9),€(x), x, gx) where P is the following pullback:

P HxY

L l(pz,t)

XxX-Z5yVxY

The first condition implies that for all y € Y, there exists 2 € X such that e(x) € [y]q,
in other words an essential equivalence is not necessarily surjective but has to reach all
of the orbits. The second assures that the isotropies are kept; an essential equivalence
cannot send points from different orbits in X to the same orbit in Y and there is a bijection
between the sets:

{9 € G|z’ = ga} = {h € Hle(z") = he(x)}.

2.2. REMARK. Let’s simplify condition 1). Note that
Xy (HxY) = {(2,hyy) | e@) = s(h.y)} = {(2.h,y) | ea) = y)}
and we have a homeomorphism
XxH—=Xxy(HxY)

by sending (z,h) — (z, h,e(x)) with inverse given by (x,h,y) — (x,h).
Condition 1) then is equivalent to requiring that the map

p: X xH=Y
given by (x,h) — he(x) is an open surjective map.

2.3. DEFINITION. Two actions G x X and H XY are Morita equivalent if there is a third
action K X Z and two essential equivalences

GKXMKIXZ(L’GLHIXY.

We write G x X ~yy Hx Y.

The idea is that two actions are Morita equivalent if they define the same quotient
object, which in general is not just the quotient space. However, we do have the following.
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2.4. PROPOSITION. Two free actions G X X and K XY are Morita equivalent if and only
if their quotient spaces X/G and Y /K are homeomorphic.

For instance the free actions of Z, and Zs by rotation on the circle S* are Morita
equivalent but their actions on the disc D? are not Morita equivalent, Zgx D? oLy, Zix D?,
since the isotropy at the origin is not preserved.

By Proposition 2.4, free actions are Morita equivalent if they have the same quotient
spaces. The notion of Morita equivalence extends the idea of “sameness” to actions that
are not free.

As a topological space, the orbit space of a group action can be very uninteresting, so
when talking about the action’s orbit space we will consider extra structure on this singular
space constructed from the translation groupoid. The importance of Morita equivalence
lies in the fact that Morita equivalent groupoids yield the same enriched singular space.

Many properties of the action are shared by all Morita equivalent groupoids. Some
objects, like orbifolds, are defined as a Morita equivalence class of a certain type of
groupoid. In addition, we can often understand a particular invariant of a given group
action by analyzing that of a simpler representative of its Morita equivalence class.

In what follows, we prove that the generalized Lusternik-Schnirelmann category of a
group action, gcatg(X), is invariant under Morita equivalence. By what we have just
said, for orbifolds defined by a group action, this then provides a well defined invariant as
well as a tool to calculate this invariant by reducing the calculations to a simpler group
action.

Pronk and Scull gave a nice characterization of essential equivalences for translation
groupoids that can be used in practice to construct or check Morita equivalences. In fact,
the argument given for Lie groupoids in [19] works for topological groupoids as well. Our
main result will extensively use this characterization.

2.5. PROPOSITION. [Proposition 3.5 of [19]] Any essential equivalence is a composite of
maps of the forms (1) and (2) described below.

1. (quotient map) G x X — G/K x X/K where K is a normal subgroup of G acting
freely on X.

2. (induction map) H x X — G x (G xyg X) where H is a (not necessarily normal)
subgroup of G acting on X and G xg X = G x X/ ~ with (gh™!, hx) ~ (g,) for
any h € H.

Notation: if N is a normal subgroup of X, we write N < X.

2.6. REMARK. Note that (1) says that if G acts freely on X, then the quotient map
X — X/G is an essential equivalence G x X — {1} x X/G. This means that an invariant
of a group action is a Morita invariant only when it is the same for the free G-space X
and for the quotient X/G. Later we will see that this rules out the standard notion of
equivariant topological complexity as a candidate for an analogous orbifold invariant.
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3. Lusternik-Schnirelmann category and topological complexity

Recall that the Lusternik-Schnirelmann category of a space X, denoted cat(X), is the
least k such that X may be covered by k open sets ! {Uy, ..., U} such that each inclusion
ty;: U; — X is null-homotopic. The open sets U; are called categorical sets.

Clapp and Puppe [5] defined a generalization of the LS-category, allowing the open
sets to deform into a larger class of objects A, not only into points.

We say that a subset U C X is compressible into a subset A C X, if the inclusion map
vy : U — X is homotopic to a map ¢: U — X with ¢(U) C A.

Let A be a class of spaces, at least one of which is non-empty. The A-category of
X, denoted 4catX, is the least integer k such that X may be covered by k open sets
{Un,...,Ug} such that each inclusion U; — X factors up to homotopy through a space
A; € A If Ais a class of subsets of X, then 4cat(X) is the least integer k such that X
may be covered by k open sets {Uj,. .., U}, each compressible into some A; € A.

The sectional category of a map p : E — B, denoted secat(p), is the least integer k
such that B may be covered by k open sets {Uy, ..., U} on each of which there exists a
homotopy section of p, that is, a map s : U; = E such that ps ~ ¢y, : U; — B.

The sectional category of a fibration p: £ — B is a lower bound for the category of
the base, secat(p) < cat(B) and equality holds if the space E is contractible [21].

The topological complexity of a space X is a homotopy invariant defined by Farber [10]
in order to study the motion planning problem in robotics. Let X' denote the space of
free paths in X, endowed with the compact-open topology. Let ev : X! — X x X be the
evaluation map ev(y) = (7(0),7(1)). A motion planner on an open subset U C X x X is
a section of ev over U, i.e. a continuous map s : U — X7 such that the following diagram
commutes:

XI

U X x X

3.1. DEFINITION. The topological complexity of a space X, denoted TC(X), is the least
integer k such that there exists an open cover of X x X by k open sets on each of which
there is a motion planner.

3.2. REMARK. Note that the homotopy lifting property implies that every homotopy sec-
tion of a fibration gives an actual section, so commutativity in the diagram above may be
replaced by homotopy commutativity.

The following theorem provides a characterization of the topological complexity in
terms of the sectional category and the A-category. Let A(X) C X x X denote the
diagonal subspace.

Note that some authors only require k + 1 open sets for cat(X) = k.
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3.3. THEOREM. For a space X, the following statements are equivalent:
1. TC(X) <k.

2. secat(ev) < k: there exist open sets Uy,..., Uy which cover X x X and sections
s; 2 Uy — X' such that ev o s; is homotopic to the inclusion U; = X x X.

3. awx)cat(X x X)) < k: there exist open sets Uy, ..., Uy which cover X x X and which
are compressible into A(X).

The equivalence of (1) and (2) is the previous remark, for the equivalence of (2) and
(3) see corollary 18.2 of [11].

4. Equivariant theory

In this section, we recall some of the equivariant versions of the invariants defined previ-
ously.

The equivariant category of a G-space X, denoted catg(X), is the least integer k
such that X may be covered by k invariant open sets {Uy, ..., U}, each of which is G-
compressible into a single orbit. That is, each inclusion map ty, : U; — X is G-homotopic
to a G-map c: U; — X with ¢(U;) C [z]¢ for some z € X.

Let A be a class of G-spaces, at least one of which is non-empty.

The equivariant A-category of X, denoted 4 catg(X), is the least integer k such that
X may be covered by k invariant open sets {Uy, ..., U} such that each inclusion U; < X
factors up to G-homotopy through a space A; € A. If A is a class of G-invariant subsets of
X, then 4 catg(X) is the least integer &k such that X may be covered by k invariant open
sets {Uy,...,Ux}, each G-compressible into some A; € A. In particular, 4catg(X) =
catg(X) when A is either the class of homogeneous spaces G/H, or the class of G-orbits
of the action.

Note that the G-invariance of the objects in A is implicit in the notation 4 catg(X).

The equivariant sectional category of a G-map p : E — B, denoted secatg(p), is the
least integer k such that B may be covered by k invariant open sets {Uy, ..., Ui} on each
of which there exists a G-map s : U; — E such that ps ~¢ vy, : U; — B.

The first attempt to define an equivariant version of the topological complexity resulted
in the following notion. Let X be a G-space. The free path fibration ev: X! — X x X
is a G-fibration with respect to the actions

Gx X' = X1, GxXxX—XxX,

g @) =gv(®),  glx,y) = (97, 9Y).



MORITA INVARIANCE 185

4.1. DEFINITION. [7] The equivariant topological complexity of the G-space X, denoted
TCq(X), is the least integer k such that X x X may be covered by k invariant open sets
{Uy,..., Uy}, on each of which there is a G-equivariant map s;: U; — X! such that the
diagram commutes:

XI

Zk

U X x X

The equivariant topological complexity also has a characterization in terms of the
equivariant sectional and equivariant A-category, just like the non-equivariant one.

4.2. THEOREM. [Lemma 3.5 of [13]] For a G-space X, the following statements are equiv-
alent:

1. TCqx(X) < k.

2. secatg(ev) < k: there exist G-invariant open sets Uy, . .., Uy which cover X x X and
G-equivariant sections s; : U; — X! such that evos; is G-homotopic to U; — X x X.

3. ax)catg(X x X) < k: there exist G-invariant open sets Uy, ..., U, which cover
X x X and are G-compressible into A(X).

Unfortunately, the equivariant topological complexity is not invariant under Morita
equivalence since there are free actions whose equivariant topological complexity is differ-
ent from the topological complexity of the quotient space (see Remark 2.6). For instance,
the equivariant topological complexity of the free action of S' on S! by rotation is at
least 2 since the ordinary topological complexity of the space is a lower bound for the
equivariant one, TCg1(S') > TC(S!) = 2. The quotient space of this action is a point,
so TC(S'/SY) =1.

Another approach to defining a topological complexity in the equivariant setting leads
to the definition of the invariant topological complexz’ty

Consider the space X7’ XX/GX = {(a,B) € X" x XI la(D)]e = [8(0)]a}-

The map ev’: X xy/c XT — X ><Xg1venby ev'(a, B) = (a(0),5(1)) is a (G x G)-
fibration with respect to the obvious actions.

4.3. DEFINITION. [13] The invariant topological complexity of X, TC®(X), is the least
integer k such that X x X may be covered by k (G x G)-invariant open sets {Uy, ..., U},
on each of which there is a (G X G)-equivariant section s; : U; — X! Xx/c X! such that
the diagram commutes:

XI Xx/G XI
UZ' i X x X

As in the non-equivariant setting, the commutativity of the diagram can be replaced
by the requirement that it commute up to (G x G)-homotopy (see below).
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Let T79%¢(X) be the saturation of the diagonal A(X) with respect to the (G x G)-
action; that is, T9*¢(X) is the union of all (G x G)-orbits that meet A(X).

4.4. THEOREM. [Lemma 3.8 of [13]] For a G-space X the following are equivalent:
1. TCY(X) < k.

2. secatgxg(ev') < k: there exist (G x G)-invariant open sets Uy, ..., Uy which cover
X x X and (G x G)-equivariant sections s; : U; — X' X x/g X' such that ev' o s; is
(G x G)-homotopic to the inclusion U; — X x X.

3. qoxc(x) catgxa(X x X) < k: there exist (G x G)-invariant open sets Uy, ..., Uy
which cover X x X which are (G x G)-compressible into 71¢*%(X).

We will prove that the invariant topological complexity is invariant under Morita
equivalence. Our approach will be to utilize the third characterization of the invariant
topological complexity and prove a more general result for the equivariant A-category.

5. Equivariant A-category and Morita invariance

From now on, all groups will be compact Lie, and all spaces will be assumed to be
metrizable. Under these assumptions, we will prove that the equivariant A-category is
invariant under Morita equivalence. Given an equivariant map ¥ xe : GX X — HxXY and
a G-invariant subset A C X, we let A" C Y denote the saturation of €(A) with respect to
the H-action. Then if A is a class of G-invariant subsets of X, the class A" := {A'| A € A}
consists of H-invariant subsets of Y.

5.1. THEOREM. Let Y x ¢ : G X X — H X Y be an essential equivalence, and A a class
of G-invariant subsets of X. Then

A Catg(X) = A catH(X).

We will prove the result by proving that both maps of type (1) and (2) in Proposition
2.5 preserve the equivariant A-category. Explicitly, we will prove:

5.2. THEOREM. Let G be a compact Lie group acting on a metrizable space X, with
subgroup H < G and normal subgroup K <1 G such that K acts freely. Let A be a class
of G-invariant subsets of X and B be a class of H-invariant subsets of X. Consider
A/K ={A/K | A€ A} and G xy B={G xy B| B € B}. Then

1. gqcatq X =4/k catg/x(X/K)

2. BC&tHX =GxyB Catg(G XH X)
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Recall that the action of G/K on X/K is given by (¢K)-[z]x = [gx]k forg € G,z € X.
This is well-defined, since for any k, &’ € K we have

(gkK) - [K' 2] = [gkk x|
= [lgr|k for some ¢ € K, by normality
= [9z]K

It is then clear that A/K as defined in Theorem 5.2 is a family of G/ K-invariant subsets
of X/K. Since the action of G on G Xz X is given by g - [go, x] = [990, x| for all g, gy € G,
r € X, it is also clear that G x gy B is a family of G-invariant subsets of G xgz X. The
proof of Theorem 5.2 will follow from Lemmas 5.3, 5.7 and 5.8 below.

5.3. LEMMA. If K <G is a normal subgroup, then 4 catg(X) >4/k catq/x(X/K).

PROOF. Let U C X be a G-invariant open set G-compressible into A € A and H :
U x I — X a G-equivariant homotopy such that Hy =ty : U — X and H,(U) C A € A.
Consider V = U/K C X/K and define F' : V x [ — X/K as F([(2)]|k,t) = [H(x,t)|x
The homotopy F' is continuous, and:

1. Fis well defined: If [z]x = [y|k, then there exists k € K such that y = kz. Since H

is G-equivariant, then F'([y|x,t) = F([kz]k,t) & [H (kx,t)]x Greguiv [kH(z, )] "E"
def

[H(z, )]k = F([z]x.1).
2. Fis (G/K)-equivariant: if we denote § = gK, then F(g([x]xt)) “=" F([gz]x, 1) =
[H (g, )]ic T2 [gH (w0, )] "= glH (2, 6)]c = gF (2], 1),

3. Fy = wy:
Fo([]k) =

4. F1(V)C A/K: given z € U,
Fi(llx) = [Hi(@)]x € A/K.

Therefore V' is a (G/K)-invariant open set (G/K)-compressible into A/K € A/K.

In order to prove the inequality 4 catq(X) <a/k catg/x(X/K) we need to recall some
of the theory of equivariant principal bundles. Here we use the hypothesis that K is a
closed (and therefore compact) subgroup of G which acts freely on X (note that freeness
of the action was not required in Lemma 5.3).

Recall from [22, p.56] the definition of (', o, G)-bundle: Given « : I' — Aut(G) a
continuous group homomorphism between a compact Lie group I' and the automorphism
group of a topological group G, a (T, o, G)-bundle consists of a locally trivial G-principal
bundle (with right action!) p: E — B together with left I'-actions on F and B such that:

1. pis I'-equivariant;
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2. ForyeTl, g€ Gand z € X the relation y(x - g) = (7 - x)a(v)(g) holds.

The data I', , and G give rise to a semidirect product I' X, GG. The topological space
I' x G carries the multiplication

o), 9) = n(d) - 9)

In particular if « is the trivial homomorphism, we have the group I' x G° which is
isomorphic to I'" x G.

The topological group I" X, G acts from the left on the total space E of a (T, a, G)-
bundle

((7v.9).€) = (ve)g
There is a notion of local triviality for (I', &, G)-bundles which is somewhat complicated

to state, so we refer the reader to [22, p.57]. A (I', o, G)-bundle is called numerable if it
is locally trivial with respect to a numerable cover.

5.4. PROPOSITION. Given a left action of a compact Lie group G on a completely reqular
space X such that a closed normal subgroup K <1 G acts freely with X/K paracompact,
the quotient map p : X — X/K is a numerable (G, «, K)-bundle, where o : G — Aut(K)
is given by conjugation, and X is reqarded as a free right K-space via x - g = g 'z for
ge K, xe X.

PRrROOF. Because of freeness of the K-action, compactness of K and complete regularity
of X, we have that p: X — X/K is a principal K-bundle. See [4, Proposition I1.5.8].

The left G-action on X/K is given by g - [z]x = [g97]|k, and so p is obviously G-
equivariant. For all v € G,g € K and x € X we have

_ _ _ _1\—1 —
Yw-g) =(g7') =79 7 e = (v9r ")z = (@(0)(9)) e = (- 2)aly)(9)-
The local triviality follows from [22; Proposition 1.8.10] by complete regularity and the
numerability from the fact that X/K is paracompact. [

Now let’s recall two important structural results about (T', &, G)-bundles. These may
be found in section 2 of [17].

5.5. PROPOSITION. [Lemma 2.4 of [17]] Letp : E — Bx1 be a trivial numerable (I', o, G)-
bundle with I' a compact Lie group. Then there exists a bundle isomorphism E — (E|B x
{0}) x I over B x I and, hence, p has the G-Covering Homotopy Property.

5.6. COROLLARY. [Lemma 2.5 of [17]] A numerable (I', o, G)-bundle with I' compact Lie
has the G-Covering Homotopy Property (i.e. is a G-fibration).

We are now ready to prove:

5.7. LEMMA. Suppose that G is a compact Lie group acting on a metrizable space X . If
K <G is a normal closed subgroup which acts freely, then 4 catq(X) <u/x catg/x(X/K).
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PROOF. Recall that if X is a metrizable space then it is completely regular and para-
compact. If a compact Lie group G acts on a metrizable X then X/G is metrizable [18,
Proposition 1.1.12] and therefore paracompact.

Note that, by Proposition 5.4, p : X — X/K is a numerable (G, a, K)-bundle and
so is a G-fibration by Corollary 5.6. Let V C X/K be a (G/K)-invariant open set
compressible into A/K € A/K and F : V x I - X/K a (G/K)-equivariant homotopy
such that Fy =y : V — X/K and F1(V) C A/K € A/K.

Consider U = p~}(V) where p : X — X/K is the projection onto the quotient space.
Because the G-action on V factors through the G/K-action, the map F' is also a G-
equivariant map. Since p is a G-fibration, we can find a G-lift F of the composition
UxI—=VxI—X/K,

Ux0-—nd, x

|
px0 p
F(px1)

UxI-2YX/K.

Because Fi (V) C A/K, we see that Fy(U) C A (since A consists of G-invariant sets).
Hence the number of sets in an A/ K-categorical covering of X/K gives an upper bound
for the minimal number of A-categorical sets covering X.

u

We have therefore proved Theorem 5.2 (1). Part (2) is proved by applying part (1)
twice.

5.8. LEMMA. If G is a compact Lie group, H < G is a closed subgroup of G acting on a
metrizable space X, then

pcaty X =GxyB Cat(;(G Xy X)
PRroor. Consider the action of the compact Lie group G x H on G x X given by
(9.h) - (g,2) = (ggh~", hx).

Note that G x X is metrizable because it is the product of metrizable spaces and G is
a closed normal subgroup of G x H such that the action of G on G x X is free. The
quotient (G x X)/G is homeomorphic to X.

Similarly H is a closed normal subgroup of G x H and the action of H on G x X is
free with quotient (G x X)/H =G xg X.

We will apply theorem 5.2 (1.) with a class of (G x H)-invariant subsets coming from
the H-invariant collection B.

Given a collection B of H-invariant subsets of X, let G x B = {G x B | B € B} be
the corresponding collection of (G x H)-invariant subsets. Now let’s apply twice what we
have proved above. We have the following:

1. (GxB)/H cat(GxH)/H((G X X) /H) =GxB catGXH(G X X)
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2. axpcataxn (G x X) =@xpy/a cataxm (G x X) /G).
But we also have
1. (GxB)/G=B
2. (GxB)/H =G xyB,
and therefore
GxuB) Cata(G Xy X) =@axn)/m cataxmu(G x X) /H)
=cxB Catgx g (G X X)
=xB)/c Cat@axmy (G x X) /G)
=g caty(X).
m

Many G-spaces are of the form G x g X for X an H-space. Consider a G-space Y with
a G-equivariant map f: Y — G/H. If we take X = f~!(eH), then the natural map

F:GxgX—=>Y
is a G-equivariant homeomorphism (for G a compact Lie group, H closed) and we have
catg(X) = caty(f(eH))
In fact the map F gives rise to an equivalence of categories
G —Topg/g ~ H —Top

between the category of G-spaces over G/H and the category H-spaces [22, Page 33].
Under this equivalence the generalized G-equivariant category of metrizable G-spaces
over G/H corresponds to the generalized H-equivariant category of metrizable H-spaces.

5.9. COROLLARY. The equivariant category is invariant under Morita equivalence for
compact Lie group actions on metrizable spaces.

PROOF. Let ¢hxe : GX X — H XY be an essential equivalence. We have that 4 catg(X) =
catg(X) when A is the class of G-orbits. In this case, the class A" = {A'| A € A} is
the class of orbits of the action of H on Y since 1 X € is an essential equivalence and the
result follows from Theorem 5.1 above. [

5.10. COROLLARY. The invariant topological complexity is invariant under Morita equiv-
alence for compact Lie group actions on metrizable spaces.

PROOF. If Y x € : G x X — H X Y is an essential equivalence, then (¢ x ¢) X (e X €) :
(GxG)x (X xX)— (Hx H)x (Y xY) is an essential equivalence. Since T#*#(Y) is
the saturation with respect to the (H x H)-action of ¢(79*¢(X)), we have that

TCG(X) =6xG(X) CatGXg<X X X) =HxH (Y) catHXg(Y X Y) = TCH(Y)
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5.11. REMARK. It is likely that everything we have done above for compact Lie group
actions also holds for proper actions of discrete groups on a restricted class of spaces
(such as ANRs). Because our main focus is on developing an invariant for orbifolds, we
have however chosen to concentrate on the case of compact Lie groups.

Higher topological complexities were introduced by Rudyak [20]. In [2] higher analogs
of equivariant and invariant topological complexity are introduced. Let A, (X) C X™ be
the diagonal and let T1,,(X) be the saturation of A, (X) with respect to the G"-action on
X". Define the n'™-higher equivariant topological complexity of X by

TCG’n =A,(Xx) catgn (Xn)
and the n'"'-higher invariant topological complexity of X by
TCG’n =0 (X) catgn (Xn)

The higher equivariant topological complexities are not Morita invariant. For instance,
the higher equivariant topological complexity of the free action of S* on S! by rotation is
at least 2 since the ordinary topological complexity of the space is a lower bound for the
equivariant ones

2=TC(S") < TC,(5") < TCg,(S").
The quotient space of this action is a point, so TC,,(S*/S!) = 1.

5.12. COROLLARY. The higher invariant topological complexities are invariant under
Morita equivalence for compact Lie group actions on metrizable spaces.

PROOF. If yxe : Gx X — H XY is an essential equivalence, then [[¢ x[[e: G"x X" —
H"™ x Y™ is an essential equivalence.
Since T1,(Y) is the saturation with respect to the (H™)-action of ¢(7,(X)), we have
that
TCG’n(X) =T.(X) Catgn (Xn) =T.(Y7) catygn (Yn) = TCH’H(Y).

Note that cat(X%) < catq(X) and we have

max{cat(X %), cat(X/G)} < catg(X).

But since equivariant LS-category is Morita invariant and cat(X®) is not, by changing by
a Morita invariant action we can improve the lower bound. In fact, by Lemma 5.3, for
K <G (not necessarily acting freely) we have

catg/k (X/K) < catq(X)
and by taking fixed points

cat((X/K)¥¥) < catq/x(X/K).
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This then gives the inequality
max{cat((X/K) )} < catg(X)
K<G

which generalizes the known inequality (taking K = {e} and K = G).
There are similar inequalities for invariant TC and the higher analogs. In [13, Remark
3.9, Corollary 3.26] it is shown that

max{TC(X%), TC(X/G)} < TCY(X),
and in [2, proposition 4.4 and proposition 4.9] that
max{TC,(X%), TC,(X/G)} < TC%"(X).
By the same argument as before,

max TC((X/K)%/") < TC(X)

and

max TC, ((X/K)%%) < TCE"(X).
K«G

6. Orbifolds as Morita classes of groupoids

We recall now the description of orbifolds as groupoids due to Moerdijk and Pronk [16].
Orbifolds were first introduced by Satake [21] as a generalization of a manifold defined in
terms of local quotients. The groupoid approach provides a global language to reformulate
the notion of orbifold. This way of representing orbifolds allows for a natural generaliza-
tion to the topological context, via topological groupoids. We use the same name orbifold
for the topological version 2.

A topological groupoid G; =% Gy is proper if (s,t) : G; — Gp x Gy is a proper map
and it is a foliation groupoid if each isotropy group is discrete.

6.1. DEFINITION. An orbifold groupoid is a proper foliation groupoid.

Given an orbifold groupoid G; = Gy, let orb(x) = t(s~'(x)) be the orbit through
x € Gy and define the equivalence relation: = ~ y if and only if orb(x) = orb(y). The
orbit space Go/~ is the space of all orbits with the quotient topology. The orbit space
of an orbifold groupoid is a locally compact Hausdorff space. Given an arbitrary locally
compact Hausdorff space X we can equip it with an orbifold structure as follows.

6.2. DEFINITION. An orbifold structure on a locally compact Hausdorff space X is given
by an orbifold groupoid G1 = Gy and a homeomorphism h : Go/~ — X.

If € is an essential equivalence between the groupoids and € : Hy/~ — G/~ is the
induced homeomorphism between orbit spaces, we say that the composition hoé : Hy/~ —
X defines an equivalent orbifold structure.

2Note that some authors call this notion orbispace.
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6.3. DEFINITION. An orbifold X is a space X equipped with a Morita equivalence class
of orbifold structures. A specific such structure, given by G1 = Gy and h: Gy/~ — X is
a presentation of the orbifold X .

If two groupoids are Morita equivalent, then they define the same orbifold. Therefore
any structure or invariant for orbifolds, if defined through groupoids, has to be invariant
under Morita equivalence.

A large class of orbifolds, possibly all, can be presented by a groupoid Morita equivalent
to a translation groupoid G x X with G a compact group acting on X. Orbifolds that
can be described this way are called representable. It is conjectured that all orbifolds are
representable [12].

From Corollary 5.10, we have a well defined invariant for representable orbifolds:

6.4. DEFINITION. Let X be a representable orbifold presented by the translation groupoid
G x X where G is a compact Lie group and X a metrizable space. The orbifold invari-
ant topological complexity of X, TCp(X), is the invariant topological complexity of the
groupoid G x X ; that is TCo(X) = TCY(X).
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